Broadband acoustic projector for low-frequency synthetic aperture sonar application

نویسنده

  • Thomas R. Howarth
چکیده

Possibilities for increased mine detection and classification techniques have established a need for broadband, underwater acoustic projectors. An advanced version of a low frequency synthetic aperture sonar (SAS) for the mine reconnaissance hunter program has recently been developed. The transducer is resonant at 100 kHz but has been designed to deliver constant high sound pressure levels over an operating frequency range of 10 kHz to 100 kHz. This wide band operation is accomplished because of an absence of spurious modes within the operational frequency decade. The actual projector is constructed with a two layered 1-3 piezocomposite material stacked in mechanical series and electrically wired in parallel. This arrangement was selected in order to maximize the source level output. The center electrode of the monolithic 1-3 piezocomposite layers has been segmented to offer four individual elements such that combinations of the sectors offer the ability to access nine different apertures. A constant source level is maintained through the use of a preshaped transformer between the driver and the projector. The combination of the transformer design with the clean spectrum response of the composite material results in an acoustic projector with constant source level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic projectors for AUV and UUV applications in shallow water regions

For acoustic identification of objects in a littoral environment, there are generally three frequency bands of interest; 1 kHz to 10 kHz, 10 kHz to 100 kHz and 100 kHz to 1 MHz, where the selection of these bands is dependent upon the specific Navy mission. This paper will discuss the progress of the Naval Research Laboratory in developing acoustic projector prototypes to address the lower two ...

متن کامل

3-D Acoustic Imaging of Broadband SAS data

The difficult conditions encountered in the littoral region require development of flexible sonar processing technologies. One technical approach to increase the flexibility of active sonar has been the development of broadband sonar for multifrequency analysis. Physics based target models of acoustic backscatter use frequency as a prime variable, often defined in terms of radius, a, and acoust...

متن کامل

Ultrasonic Imaging in Air with a Broadband Inverse Synthetic Aperture Sonar

An experimental ultrasound scanning sonar has been developed that uses a phased ultrasonic transducer array to image objects through the air. The sonar generates arbitrary long duration broadband signals and uses pulse compression to achieve a high range resolution and a high signal to noise ratio. This paper considers using the sonar in an inverse synthetic aperture side-scan configuration, wh...

متن کامل

Navy Applications of High-Frequency Acoustics

Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high ...

متن کامل

Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-nois...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006